Set-6 Quantitative Aptitude Questions in Hindi

Set-6 Quantitative Aptitude Quiz : Here you will read set-6 Quantitative Aptitude questions answers in Hindi for competitive examinations. These all set-6 Quantitative Aptitude questions will be helpful for various exams.

सेट-6 मात्रात्मक योग्यता पर प्रश्नोत्तरी


प्रश्न 1. एक संख्या के 45% और एक ही संख्या के 37% के बीच का अंतर 896 है। उस संख्या का 25% क्या है?

  • 1200
  • 2800
  • 2569
  • 3467
  • सही उत्तर
    उत्तर: 2800
    (45 - 37) % का संख्या = 896 8% संख्या = 896
    संख्या = 896 x100 / 8
    = 89600/8
    = 11200 रु
    25200 का 25% = 11200 x 25/100
    = 280000/100
    = 2800

    प्रश्न 2. एक दुकानदार ने 1800 ब्लैकबेरी और 1200 ब्लूबेरी खरीदी। उन्होंने पाया कि 45% ब्लैकबेरी और 24% ब्लूबेरी सड़ा हुआ था। अच्छी स्थिति में फलों का प्रतिशत ज्ञात करें।

  • 63.4
  • 32.9
  • 48.5
  • 56.3
  • सही उत्तर
    उत्तर: 63.4
    खरीदे गए फलों के दुकानदार की कुल संख्या = 1800 + 1200 = 1000 सड़े हुए ब्लैकबेरी की संख्या = 1800 का 45%
    = 45/100×1800
    = 81000/100
    = 810
    सड़े हुए ब्लूबेरी की संख्या = 1200 का 24%
    = 2400/100×1200
    = 28800/100
    = 288
    इसलिए, सड़े हुए फलों की कुल संख्या = 810 + 288
    = 1098
    इसलिए अच्छी स्थिति में फलों की संख्या = 3000 - 1098
    = 1902
    इसलिए अच्छी स्थिति में फल का प्रतिशत = (1902/3000×100)
    = (190200/3000)
    = 63.4%

    प्रश्न 3. एक गोलाकार भूमि का क्षेत्रफल 35.42 हेक्टेयर है। रुपये की दर से बाड़ लगाने की लागत ज्ञात कीजिए। 5 प्रति मीटर लगभग

  • 14457.5
  • 12457.25
  • 10550.57
  • 15050.75
  • सही उत्तर
    उत्तर: 10550.57
    क्षेत्र = (35.42 x 10000) एम 2 = 354200 एम 2
    ΠR2 = 354200 ⇔ (R) 2 = (354200 x (7/22)) 70 R = 335.70 मीटर।
    परिधि = 2ΠR = (2 x (22/7) x 335.70) m = 2110.114 मीटर। बाड़ लगाने की लागत = रु। (2110.114 x 5) = रु। 10550.57

    प्रश्न 4. एक कार का पहिया 35 किमी की दूरी तय करने में 650 चक्कर लगाता है। पहिए की त्रिज्या ज्ञात कीजिए?

  • 1.5 मी
  • 3.61 मी
  • 3.65 मी
  • 1.45 मी
  • सही उत्तर
    उत्तर: 3.61 मी
    एक चक्कर में शामिल दूरी = ((35X 650) / 1000) = 22.75 मी।

    2R = 22.75 => 2 * (22/7) x R = 22.75
    => आर = 22.75 * (7/22) * 1/2 = 3.61 मीटर आर = 3.61 मीटर
    इसलिए पहिया का त्रिज्या 3.61 मीटर है

    प्रश्न 5. एक चूड़ी बनाने के लिए 10 पत्थरों को कितने तरीकों से व्यवस्थित किया जा सकता है?

  • 267720
  • 284360
  • 125380
  • 181440
  • सही उत्तर
    उत्तर: 181440
    संभव व्यवस्थाओं की संख्या = {1} / {2} X (10-1)!
    = {1} / {2}X 9!
    = {1} / {2} X 9×8×7×6×5×4×3×2×1
    = {1/2}×362880
    = 181440 पर

    प्रश्न 6. जन्मदिन की पार्टी में, हर व्यक्ति हर दूसरे व्यक्ति के साथ हाथ मिलाता है। यदि पार्टी में कुल 66 हैंडशेक थे, तो पार्टी में कितने व्यक्ति मौजूद थे?

  • 9
  • 8
  • 7
  • 12
  • सही उत्तर
    उत्तर: 12
    मान लें कि किसी पार्टी में हर व्यक्ति हर दूसरे व्यक्ति के साथ हाथ मिलाता है
    हैंड शेक की कुल संख्या nC2 द्वारा दी गई है
    N = पार्टी में उपस्थित व्यक्तियों की कुल संख्या
    nC2 = 66
    n (n-1) / 2 = 66
    n - n = 2×66 n² - n - 132 = 0
    n = 12, -11
    लेकिन हम n तो, n = 12 का ऋणात्मक मान नहीं ले सकते
    इसलिए पार्टी में व्यक्तियों की संख्या = 12 है

    प्रश्न 7. धन्वंतर 15 किमी/घंटा स्थिर पानी में तैर सकता है। 3 किमी/घंटा करंट वाली नदी में, वह एक निश्चित दूरी तक तैरता है और 100 मिनट के भीतर वापस आता है। दो बिंदुओं के बीच की दूरी क्या है?

  • 11 किमी
  • 13 किमी
  • 19 किमी
  • 12 किमी
  • सही उत्तर
    उत्तर: 12 किमी
    अभी भी पानी में गति (

  • = 15 किमी/घंटा वर्तमान में गति (
  • = 3 किमी/घंटा अपस्ट्रीम गति = a - b
    = 15 - 3
    = 12 किमी/घंटा
    बहाव की गति = a + b
    = 15 + 3
    = 18 किमी/घंटा
    बता दें कि 2 बिंदुओं के बीच की दूरी किमी है। कुल यात्रा का समय = s / 12 + s / 18 = 100/60 3s + 2s / 36 = 5/3
    5s / 36 = 5/3
    15x = 36 * 5
    x = 36 * 5/15
    = 12 किमी
    दोनों बिंदुओं के बीच की दूरी 12 किमी है
  • प्रश्न 8. X, Y, Z एक झील पर तीन शहर हैं जो समान रूप से बहती हैं। Y, X और Z से एक समान है, 20 घंटे में X से Y और रिटर्न। वह 8 घंटे में X से Z तक पंक्ति लगा सकता है। अभी भी पानी में आदमी की गति का अनुपात वर्तमान की गति है?

  • 3: 5
  • 5: 3
  • 2: 3
  • 7:2
  • सही उत्तर
    उत्तर: 3: 5

    अभी भी पानी में आदमी की गति दें = x किमी/घंटा वर्तमान की गति = y किमी/घंटा
    बहाव की गति = (x + y) किमी/घंटा ऊपर की ओर की गति = (x - y) किमी/घंटा
    झील को X से Z और बहने दें
    xy = yz a फिर xz = 2a
    a / (x + y) + a / (x - y) = 20 y1
    और 2a / x + y = 8 a2
    a / x + y = 4 =3
    स्थानापन्न 3 में 1 4 + a / x - y = 20
    a / x - y = 16 =4
    3 और 4 को विभाजित करने पर हमें एक, (x + y) * (x –y) / a = 4/16 मिलता है
    x - y / x + y = 1/4
    4x - 4y = x + y 3x = 5y
    x / y = 3/5  x: y = 3: 5

    Next

    Previous

    2 thoughts on “Set-6 Quantitative Aptitude Questions in Hindi

      1. आप ग्रुप डी के प्रश्न हिंदी जीके के पेज पर खोज सकते है. धन्यवाद|

    Comments are closed.